
RESEARCH ARTICLE

Achieving High Resolution Timer Events in
Virtualized Environment
Blazej Adamczyk*, Andrzej Chydzinski

Institute of Informatics, Silesian University of Technology, Gliwice, Poland

* blazej.adamczyk@polsl.pl

Abstract
Virtual Machine Monitors (VMM) have become popular in different application areas. Some

applications may require to generate the timer events with high resolution and precision.

This however may be challenging due to the complexity of VMMs. In this paper we focus on

the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and

VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently,

provided resolutions and precisions are far too low for some applications (e.g. networking

applications with the quality of service). Then, using Xen virtualization we demonstrate the

improved timer design that greatly enhances both the resolution and precision of achieved

timer events.

Introduction
Throughout the years time keeping techniques for common operating systems have evolved
several times. Some changes were caused by the introduction of a new timer hardware into PC
architecture. Processor and motherboard manufacturers have created several different devices
to keep the track of time, in particular: the Programmable Interval Timer (PIT) [1], Real Time
Clock (RTC) [2], Local Advanced Programmable Controller (lapic) [3], Advanced Configura-
tion and Power Interface (ACPI) (also called chipset timer) [4], Time Stamp Counter (TSC)
(see RDTSC instruction in [5]) and High Precision Event Timers (HPET) [6]. Each of the
above was designed to serve a different purpose. Some provide advanced interrupt functional-
ity while others are based on a simple counter register without any asynchronous notifications.
Other changes in time handling techniques originated from architectural changes, like the
introduction of Linux Tickless kernel mode. Previously, the kernel required a periodic timer
interrupt to be delivered in order to work properly. The tickless mode allows the kernel to have
longer inactivity periods and saves it from unnecessary interrupts and context switches while
still maintaining good performance and time synchronization [7]. Another important modifi-
cation to Linux timing functionality was the introduction of High Resolution Timers (hrtimers)
[8]. This is a universal mechanism for scheduling timer events on currently available hardware
thus allowing for a good resolution. It has become very popular and it is currently widely used
among various kernel modules.

PLOSONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 1 / 25

a11111

OPEN ACCESS

Citation: Adamczyk B, Chydzinski A (2015)
Achieving High Resolution Timer Events in
Virtualized Environment. PLoS ONE 10(7):
e0130887. doi:10.1371/journal.pone.0130887

Editor: Ian McLoughlin, The University of Science
and Technology of China, CHINA

Received: November 4, 2014

Accepted: May 26, 2015

Published: July 15, 2015

Copyright: © 2015 Adamczyk, Chydzinski. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: The infrastructure was supported by
POIG.02.03.01-24-099/13 grant: “GeCONiI—Upper
Silesian Center for Computational Science and
Engineering.”

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130887&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130887&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130887&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Today’s computer systems are often being virtualized to increase the hardware utilization
and to decrease maintenance costs. Thus the programmers are faced with many new challenges
related to the virtualization concept. Usually, in such environments one main operating system
has a direct access to the hardware and is responsible for sharing it among other virtual
machines. Naturally, this additional software layer influences the performance and may be cru-
cial for the time-related functionality.

As for the related literature, the implementation of hrtimers in Linux operating system
(without virtualization) is well described and discussed (e.g. in [8] or [9]). However, consider-
ing virtualized environments the emulation of timer hardware becomes a very important factor
which influence is not well described. For instance, there is very little information available
about the timer implementation in Kernel-based Virtual Machine (KVM). The authors of [10]
while trying to achieve the virtualization with real-time processing explained and analyzed the
timer mechanism but only briefly and with no measurements of the accuracy or precision. The
VMWare VMM implementation of the timers is described in detail in [11]. Unfortunately, no
measurements of the resolution or precision are presented either. In a VMWare virtual
machine several different timer devices are being emulated. The emulation mechanism, time
synchronization issues and the distribution of timer events among several virtual processors
(VCPU) may have significant, as well as negative impact on the precision. Regarding Xen avail-
able literature is missing a detailed description of the Xen timer implementation. Moreover, we
could not find any studies regarding Xen timer precision or accuracy. In [12] a detailed
description of the Xen internals is presented, yet with only a brief explanation of the timer
mechanism itself.

Depending on the application timer resolution and precision are not always considered as
the most important. Several papers focus on decreasing timer resolution in virtualized environ-
ments in order to achieve other goals. In [13] for example the authors evaluate the influence of
the timer events on the overall power consumption. In such a situation it is good to minimize
the number of timer events and their processing complexity. Sometimes, the elimination of the
fine grained timers in virtual environments can increase the security, as it was shown in [14].
In case of this study the situation is opposite—we are interested in high timer resolution and
precision. As VMMs are general purpose systems, the potential applicability of precise timers
is wide.

As it will be shown presented virtualization platforms provide timer events at a resolution
of hundreds of microseconds. For some applications this resolution may be far too low. In net-
working, for instance, the transmission of a typical packet (1500 bytes) on a typical interface (1
Gb/s) takes only 12μs while the resolution of the timer events in the examined virtualization
platforms may be a few orders of magnitude lower than that. Therefore, we cannot design
applications with a high quality of service requirements, e.g. providing the total packet process-
ing time below 20μs.

We faced this problem while implementing a time-based network scheduler for the virtua-
lized networking infrastructure described in [15]. However, there are many other applications
where high resolution timers may be required, e.g. CPU scheduling [16], automotive platforms
[17] and others.

The purpose of this paper is twofold. Firstly, we present the measurements of the resolution
and precision of the timer events in some commonly used virtual machine monitors: VMWare
[18], VirtualBox [19], Qemu [20], Xen [21], and KVM [22]. Secondly, we propose our own
implementation of the virtual timer interrupts for Xen which provides far better resolution and
precision comparing to the original measurements of all five platforms.

The detailed outline of the paper is as follows. In Section Evaluated Virtualization Systems,
all five evaluated virtualization platforms are briefly described. Section Experiments presents

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 2 / 25

the performed measurements of timer event resolution and precision for all mentioned
VMMs. We also compare and discuss the results in this section. Beginning with Section Xen
VMM we focus on Xen VMM by describing its architecture and the timer implementation.
Then, in section New High Resolution Timer, we present how Xen sources can be modified to
achieve much better resolution and precision by creating a separate timer mechanism. Natu-
rally, measurements of the resolution and precision of the proposed implementation are also
presented. Finally, the conclusion is presented in section Conclusion.

Virtual Machine Monitors
Virtualization systems fall into two categories: full virtualization and paravirtualization. Before
hardware virtualization support technologies (namely the Intel VT-x and AMD SVM, later
called AMD-V), the x86 architecture was not easy to virtualize (the architecture did not meet
the virtualization requirements stated by Popek and Goldberg in [23]), as some crucial CPU
instructions could be executed from outside the privileged mode without causing a trap. To
tackle this problem some virtualization engines (e.g. VMWare) use the so called “binary
rewrite”method (see [12]) which results in significant performance penalty, due to all for-
bidden instructions have to be detected and rewritten at run-time. On the other hand, paravir-
tualization (e.g. Xen) approaches the problem differently by rewriting the problematic
instructions at the design time—it means that the guest operating system has to be modified in
advance to work properly. Xen was one of the first virtualization platforms that used the con-
cept of paravirtualization.

Both approaches have their advantages and disadvantages. Full virtualization is much more
portable and allows to virtualize any operating system, but at the expense of performance.
Paravirtualization does not require the emulation of the hardware and allows many hardware-
related operations to be performed more efficiently.

Nowadays, after the virtualization support technologies were introduced (thus eliminating
the mentioned x86 virtualization problems) the distinction between full and paravirtualization
has significantly blurred. For example, Xen utilizes Intel VT-x and AMD-V to support full vir-
tualization. Kernel-based Virtual Machine (KVM), which was designed to implement strictly
full virtualization, has started to use paravirtual drivers to achieve better IO operations
performance.

Another factor which differentiates Virtual Machine Monitors is their architecture. Some
VMMs (like Xen, VMWare vSphare Hypervisor—previously called VMWare ESXi, and Micro-
soft Hyper-V) use a dedicated small operating system called hypervisor that is responsible for
the virtualization of the main resources, such as CPU and memory. Other VMMs (such as
KVM, Qemu, VirtualBox, VMWare Workstation/Player or Microsoft Virtual PC) utilize an
existing host operating system to perform this task.

Usually, in hypervisor-based virtualization the user interacts first with the virtual machine,
not the hypervisor itself, as it does not provide any user interface. Such small purpose-built
hypervisors allow for better implementation without any limits placed by an existing generally
purposed operating system. On the other hand, all hardware related mechanisms need to be
reimplemented which may cause problems with stability and efficiency. In contrast, the VMMs
based on an existing operating system inherit the implementation and corrections from the
operating system which is usually mature and well tested.

Evaluated Virtualization Systems
For our experiments we chose five free virtualization platforms which represent mentioned
groups: Xen—a hypervisor based paravirtualization, KVM—Linux kernel-based full

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 3 / 25

virtualization with the use of the hardware virtualization technology, Qemu—Linux quick
emulator with full software virtualization, VirtualBox—Open Source full virtualization soft-
ware maintained by Oracle company, and VMWare Player—host operating system based full
virtualization technology. The evaluated products are widely used around the world and cer-
tainly are among the most popular virtualization platforms. A short description of each will be
presented in the following sections.

VMWare Player
VMWare Player is a free version of the VMWare virtualization platform which is based on the
same core functionality as VMWare Workstation. It is available for Windows and Linux based
host operating systems. According to the End User License Agreement [24] it can be used for
personal and non-commercial purposes, or for distribution or other use by written agreement.
The first version of VMWare Player was released in June 2008. It was based on version 6 of
VMWare Workstation. The roots of VMWare Workstation date back to 1999, when the initial
version was released. The latest stable release of VMWare Player at the time of writing this arti-
cle is version 7.1.0.

VMWare software can be run on an existing host operating system. It is possible to run
VMWare virtual machines on Microsoft Windows, Linux and Mac OS X host operating sys-
tems. Because it performs a full virtualization, by means of emulation and binary rewriting, it is
possible to run any x86 and x86–64/AMD64 compatible operating systems [25].

VirtualBox
VirtualBox is an open source full virtualization platform. In terms of architecture and design it
is very similar to VMWare products. The first version of VirtualBox was released by Innotek
GmbH in 2007. Since the beginning an Open Source Edition of VirtualBox has been available
with the GNU General Public License, version 2. The project was bought by Sun Microsystems
in 2008 and later in 2010 with the acquisition of Sun by Oracle it was renamed to “Oracle VM
VirtualBox”.

VirtualBox supports the common host operating systems: Microsoft Windows, Mac OS X,
Linux and Solaris. Similarly to VMWare, the full virtualization is achieved by binary rewriting
ring 0 privileged instructions using the Code Scanning and Analysis Manager (CSAM) and the
Patch Manager (PATM). The latest stable release of VirtualBox is 4.3.26.

Qemu
The Quick Emulator called Qemu is an open source project which allows for emulation of dif-
ferent hardware platforms and run fully virtualized guest operating systems. It can emulate
CPU of the following platforms: x86, MIPS, 32-bit ARMv7, ARMv8, PowerPC, SPARC,
ETRAX CRIS and MicroBlaze. It can also emulate hardware devices to let for full support of
common operating systems.

Qemu by itself can be used to run userspace programs compiled for different platforms or
to fully emulate a computer system with all necessary hardware. Qemu is also employed in Xen
and KVM in hardware (other than CPU) emulation tasks. The Qemu project was started by
Fabrice Bellard in 2004, is available for free, and is mainly licensed under GNU General Public
License. It can be compiled and run on most major host operating systems. Current stable ver-
sion of Qemu is 2.2.0.

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 4 / 25

KVM
KVM (Kernel-based Virtual Machine) is a virtualization platform based on the Linux kernel in
the role of a hypervisor. KVM is an open source project established in 2006 by Qumranet, Inc.
and currently maintained by the Open Virtualization Alliance. It is licensed with either GNU
General Public License or GNU Lesser General Public License. It provides full virtualization
capabilities but only for processors with hardware virtualization support (Intel VT-x or
AMD-V). Although KVM provides only full virtualization of CPU and memory, it additionally
allows the use of different kinds of IO device virtualization:

• Emulation—the devices are fully emulated which allows for great portability, but at the
expense of the performance.

• Paravirtualization—the device drivers used in the virtual machine are aware of being virtua-
lized and utilize the virtualization interface to perform IO operations much more effectively;
this approach requires the use of special drivers for the guest operating system.

• Pass-through—the device is assigned to a certain virtual machine and is not intended to be
shared.

KVM is a kernel module and is a part of Linux kernel sources since version 2.6.20. The mod-
ule exposes the /dev/kvm interface which can be used by user-space programs (e.g. qemu-kvm)
to perform virtualization.

Xen
The initial release of Xen hypervisor was created at Cambridge University in 2003. The product
was initially supported by XenSource Inc. which in 2007 was acquired by Citrix Systems, a
company that supports the development of a free version of Xen but additionally sells an enter-
prise edition to commercial clients. Currently, Xen open source software called Xen Project is
maintained as a collaborative project by the Linux Foundation consortium.

Xen provides a hypervisor-based virtualization. Initially, it allowed for paravirtualization
only but with the introduction of hardware virtualization extensions, Xen also allows full vir-
tualization mode. The core of Xen software is the hypervisor. It is a purpose-built, small operat-
ing system that provides virtualization of CPU and memory and delegates control to the first,
privileged virtual machine called Domain0. The user may run and manage all virtual machines
from within Domain0. All IO devices are handled by privileged domains which use paravirtual
drivers to share them with other virtual machines. Such architecture makes the system very sta-
ble, as the hypervisor does not handle device drivers or other functionalities which usually
cause problems.

Experiments
To check the resolution and precision of the clock event devices we performed several tests. In
all of them we used Linux Gentoo 3.17.8 as both host and virtual machine operating system.
We performed the experiment on several hardware platforms but the results presented here are
based on an Intel Xeon E5645 @ 2.4GHz, 24GB RAM with Supermicro X8DTNmotherboard.
The timer events were scheduled using hrtimers within a virtual machine. We have created a
special Linux kernel module which was used to perform and gather the results of
measurements.

In the experiments we installed version 6.0.0 of the VMWare Player, version 4.3.18 of the
VirtualBox and version 2.1.2 of the Qemu, all installed from Linux Gentoo repository (we used
the most recent stable versions of all three products available in the repository). For KVM, we

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 5 / 25

used the version of KVM available with the host kernel version i.e. 3.17.8. Finally, to test Xen
we used version 4.5.0 of Xen hypervisor. Additionally, we have also performed the experiment
on a plain Linux Gentoo 3.17.8 without using virtualization.

Considering Xen, it is important to note that the default Xen implementation sets a slop var-
iable (timer_slop) that allows merging of the timer events from certain time ranges into one
interrupt. The default value of timer_slop is set to 50μs, what is good for general purposes and
unloads the processor from unnecessary interrupt handling and context switching. Moreover,
the Xen sources of Gentoo kernel version 3.17.8 also use a similar slop constant (TIME-
R_SLOP) which is set to 100μs. Both slop settings can be changed to obtain more fine-grained
timer events with the cost of more interrupts and context switches. For the purpose of this
experiment, we have changed the slop value to 1ns in the hypervisor and in the guest domain
kernel sources. Without changing this value, the timer events in Xen virtual machines were
merged and fired with the resolution of 100μs.

The presented measurements consist of three parts which are supposed to show what is the
timer resolution and precision under the different circumstances. In the first part, all virtualiza-
tion platforms were tested in a scenario of an idle system—the system was not performing any
intense IO or CPU operations. In the second test, the system was loaded with a set of CPU
loads. Finally, the last part presents the influence of intense IO disk operations which were
causing many additional interrupts to be handled by the processor at the same time.

The results show that heavy CPU load does not influence the precision of the timer events
very much. This was to be expected as the timer events are handled as interrupts. Thus, the
incoming interrupts result with CPU preemption no matter what is the actual load level of the
CPU. The case is different when the system is loaded with other interrupts.

Historically Linux kernel was dividing the interrupt handling routines into ‘slow’ and ‘fast’
handlers. This allowed ‘slow’ interrupts to be preempted by ‘fast’ ones in order to improve the
performance of time critical functions. Such distinction between the interrupts originated from
not properly designed device drivers that were consuming too much CPU time inside the inter-
rupt handlers. This was systematically fixed by removing the time consuming parts of the driv-
ers into separate kernel tasklets running outside of the interrupt handlers. Finally, since version
2.6.35 the Linux kernel switched all interrupt handlers to be run as ‘fast’ (the IRQF_DISABLED
flag was marked as deprecated) meaning that an interrupt cannot be preempted. In general this
was a very good decision as it simplified the interrupt handling mechanisms and freed the ker-
nel from handling nested interrupts. Considering high resolution timers however, this change
could have a negative influence on timer precision. Obviously, even the fast interrupt handlers
still consume some CPU time. Thus, some other interrupts occurring right before the timer
event on the same CPU may introduce additional delays.

The third part of the experiments proves that other interrupts may have a strong impact on
the timer precision. We chose to create IO interrupts by reading the disk, but the problem
could have been demonstrated using other type of interrupts as well.

It is worth noting the following consequence of the fact that the timer performance depends
on the interrupts: the number of virtual machines running on the hypervisor does not influence
directly the timer resolution and accuracy. They are influenced only by the number of and
types of interrupts generated by them.

The detailed results are presented in the following sections.

Idle system
Firstly, in an idle system, 4500 timer events were scheduled every dmicroseconds. During our
study we have performed many different experiments with different values of d. In this article

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 6 / 25

we present only the border values of d which were hard to achieve by most of the tested
platforms.

For every scheduled event the actual time interval was measured. Then the mean value, the
sample uncorrected standard deviation, and the 99% confidence intervals were computed.

All results are gathered together in Table 1 on page 17. A detailed representation for
VMWare Player for an interval duration of 50μs is additionally depicted in Fig 1. The graph for
VMWare is similar for all measurements greater than 50μs, with the measured time being usu-
ally delayed by around 80μs from the expected value. Such results could be expected because
the timer device is being emulated by VMWare software which causes the additional delay.

Analogically, the graph for VirtualBox is presented in Fig 2. As it can be observed by looking
at Table 1, VirtualBox is usually (for all delays greater than 10μs) delayed by about 37 − 60μs
from the expected value what is slightly better in terms of resolution than VMWare Player but
still very inaccurate and imprecise.

Further, the Qemu provides again a slightly better resolution. The results, presented in
Fig 3, show that for the intervals greater than 50μs the timer events are usually delayed by
about 40μs. Thus, we may summarize that all emulated userspace full virtualization platforms
(i.e. VMWare Player, VirtualBox and Qemu) provide similar timer resolution at the level of
tens of microseconds within an idle system.

Continuing, the graph for KVM for an interval of 50μs is shown in Fig 4. It can be easily
observed that the resolution of the timer events in KVM is more fine-grained than in the case
of VMWare Player, VirtualBox and Qemu. The difference between the expected and measured
timer intervals is at the level of 12 − 16μs.

Next we performed the same experiment in a Xen based virtual machine. Again the results
are presented in Table 1 and for an interval duration of 50μs additionally depicted in Fig 5. As
one can observe, the resolution of Xen is much better when compared to KVM and all other
tested virtualization platforms.

Finally, the experiment was also repeated within bare Linux kernel without any virtualiza-
tion. The results are depicted in Fig 6. As it was to be expected the resolution is at a similar
level but the precision is even better than in case of Xen. The standard deviation for a bare
Linux kernel is at the level of one-tenth of a microsecond.

Influence of CPU load
Results presented in the previous section are valid for an idle system—i.e. a system without any
substantial IO operations or CPU load. As it was already stated intense CPU load should not
have a significant influence on the timer resolution because the timer events are being executed
as interrupts and thus the CPU is preempted independently of the current CPU state. Never-
theless, we decided to perform an additional experiment to show that this is in fact the case.

The test for 10μs similar to the one described in the previous section was repeated for Xen
platform for 3 different values of CPU load. The CPU load was generated on all 24 cores of the
machine with the use of Linux stress-ng tool [26]. The results are presented in Table 2.

As it can be observed the resolution is similar to the one obtained in an idle system and
stays at the level of one microsecond. The additional load has some small influence on the pre-
cision of the timer events but the effect is marginal. It can be related with several aspects.
Firstly, when a processor is under load the interrupt may occur more frequently under different
CPU states: idle or running. In both cases the number of instructions to be executed before the
actual timer handling routine may vary. Thus, the standard deviation is bigger and the timer
duration is less precise. Secondly, additional variation may be introduced because of the
power-saving functions, as well as temperature control logic.

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 7 / 25

Table 1. Summary of all measured statistics for each timer version discussed.

Experiment Timer
implementation

Mean measured time
[μs]

Standard deviation
[μs]

Confidence interval for the mean α
= 99%

timer setting = 150μs idle system VMWare 228.999 7.987 (228.764,229.234)

VirtualBox 218.370 71.147 (216.268,220.473)

Qemu 190.415 4.492 (190.282,190.548)

KVM 164.593 1.029 (164.562,164.623)

native Xen 150.213 0.282 (150.204,150.221)

new timers 150.151 0.175 (150.146,150.156)

Linux kernel 150.025 0.073 (150.023,150.027)

timer setting = 100μs idle system VMWare 175.908 9.867 (175.617,176.198)

VirtualBox 159.232 9.252 (158.959,159.506)

Qemu 140.259 3.832 (140.145,140.372)

KVM 114.087 0.753 (114.064,114.109)

native Xen 100.221 0.339 (100.211,100.231)

new timers 100.074 0.118 (100.071,100.078)

Linux kernel 100.103 0.070 (100.101,100.105)

timer setting = 50μs idle system VMWare 123.951 7.110 (123.742,124.161)

VirtualBox 97.749 7.633 (97.524,97.975)

Qemu 82.768 9.912 (82.475,83.061)

KVM 65.310 1.526 (65.265,65.355)

native Xen 50.108 0.085 (50.105,50.110)

new timers 50.071 0.094 (50.068,50.073)

Linux kernel 50.056 0.083 (50.053,50.058)

timer setting = 10μs idle system VMWare 24.497 4.269 (24.371,24.622)

VirtualBox 54.370 46.192 (53.005,55.735)

Qemu 66.450 11.418 (66.113,66.788)

KVM 21.762 2.637 (21.685,21.840)

native Xen 10.127 0.078 (10.125,10.130)

new timers 10.060 0.062 (10.058,10.062)

Linux kernel 10.076 0.175 (10.070,10.081)

timer setting = 150μs system with
heavy IO

VMWare 669.971 10.026K (374.986,964.957)

VirtualBox 214.700 63.933 (212.811,216.589)

Qemu 232.981 84.149 (230.494,235.467)

KVM 177.355 21.907 (176.708,178.003)

native Xen 152.796 10.177 (152.496,153.097)

new timers 150.172 0.182 (150.167,150.178)

Linux kernel 152.091 7.513 (151.869,152.313)

timer setting = 100μs system with
heavy IO

VMWare 485.224 4.266K (359.720,610.727)

VirtualBox 156.717 13.723 (156.311,157.122)

Qemu 177.905 80.585 (175.524,180.287)

KVM 119.712 9.869 (119.421,120.004)

native Xen 105.312 17.797 (104.786,105.838)

new timers 100.151 0.168 (100.146,100.156)

Linux kernel 101.454 6.340 (101.267,101.641)

(Continued)

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 8 / 25

Influence of other interrupts
Similarly to the idle system test experiments with four values of d and 4500 timer events were
repeated in a system with heavy IO usage. Namely, heavy disk operations within the virtual
machine were triggered in attempt to induce a negative effect of the other IO interrupts on the
timer accuracy and precision. This was achieved by clearing the disk caches and using the dd
Linux utility to read data from disk. To make the difference more visible the disk driver inter-
rupt was pinned to the same processor as the timer event device using the Linux smp_affinity

Table 1. (Continued)

Experiment Timer
implementation

Mean measured time
[μs]

Standard deviation
[μs]

Confidence interval for the mean α
= 99%

timer setting = 50μs system with
heavy IO

VMWare 427.037 3.558K (322.353,531.722)

VirtualBox 99.504 14.097 (99.088,99.921)

Qemu 116.652 67.896 (114.646,118.659)

KVM 76.398 21.001 (75.778,77.019)

native Xen 54.214 17.628 (53.694,54.735)

new timers 50.054 0.156 (50.049,50.058)

Linux kernel 51.767 8.180 (51.525,52.009)

timer setting = 10μs system with
heavy IO

VMWare 491.723 3.960K (375.207,608.239)

VirtualBox 58.146 45.545 (56.800,59.492)

Qemu 71.087 32.459 (70.128,72.046)

KVM 25.015 12.234 (24.653,25.376)

native Xen 11.274 10.643 (10.959,11.588)

new timers 10.053 0.096 (10.050,10.056)

Linux kernel 10.568 5.071 (10.418,10.718)

doi:10.1371/journal.pone.0130887.t001

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 1. The difference between the measured timer interval and its expected value 50μs in VMWare
(idle system).

doi:10.1371/journal.pone.0130887.g001

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 9 / 25

interrupt mask. To present the impact of disk read operations on the number of interrupts of a
single CPU, we gathered the interrupt statistics for both, the idle system and the system with
heavy IO usage. Fig 7 presents the number of interrupts per second in both cases.

The average number of the interrupts per second for an idle system is 11.52 and for the sys-
tem with heavy IO load is 1733.35. As we can see, due to the disk read operations many addi-
tional disk interrupts are handled by the CPU. According to the arguments presented in

 02222

 42222

 62222

 82222

 122222

 102222

 142222

 162222

 2 522 1222 1522 0222 0522 3222 3522 4222 4522

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 2. The difference between the measured timer interval and its expected value 50μs in
VirtualBox (idle system).

doi:10.1371/journal.pone.0130887.g002

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 3. The difference between the measured timer interval and its expected value 50μs in Qemu (idle
system).

doi:10.1371/journal.pone.0130887.g003

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 10 / 25

Section Experiments, if these interrupts are executed on the same CPU just before the sched-
uled timer interrupt, then they cause the timer events to be delayed.

The results of the experiment for the system with heavy IO load are again presented in
Table 1 on page 17. As it can be observed the additional interrupts have significant impact on
the resolution and precision of the timers in all virtualization platforms.

For VMWare, the influence of IO operations is very noticeable. First of all, the resolution
seems to be out of the microsecond scale (it is around half of a millisecond). The precision is

 0222

 42222

 46222

 48222

 41222

 40222

 62222

 66222

 68222

 2 522 4222 4522 6222 6522 3222 3522 8222 8522

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 4. The difference between the measured timer interval and its expected value 50μs in KVM (idle
system).

doi:10.1371/journal.pone.0130887.g004

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 5. The difference between the measured timer interval and its expected value 50μs in Xen (idle
system).

doi:10.1371/journal.pone.0130887.g005

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 11 / 25

also very low. Detailed results presented in Fig 8 additionally show that there were few outlier
events triggered after tens to hundreds of milliseconds, which may be unacceptable for some
time depended applications.

As far as VirtualBox is concerned the influence of additional IO interrupts is also visible.
Again, the detailed results for 50μs interval are presented in Fig 9. In contrast to VMWare
there are no outliers above 200μs. This makes the standard deviation much smaller. There are
however more values between 60 − 200μs comparing to the idle system which are probably
caused by the additional interrupts.

Qemu results are presented in Fig 10 as well as in the Table 1. Here, similarly to VMWare
the influence of IO interrupts is clearly visible. The impact is not as strong as in case of
VMWare but much stronger than in VirtualBox. The standard deviation is from around 3 (in
the best case) to around 21 (in the worst case) times greater comparing to the idle system.

In the case of KVM the results for a system with high IO load presented in Table 1 and in
Fig 11 show that the majority of events occur at around 16μs (similarly to the idle system case)
but there are also many values concentrated at the level of 55 − 70μs what is probably caused
by the additional disk interrupts. To sum up, looking at the standard deviation we may

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 6. The difference between the measured timer interval and its expected value 50μs in Linux kernel
without virtualization (idle system).

doi:10.1371/journal.pone.0130887.g006

Table 2. CPU load influence.

CPU load Timer implementation Mean measured time [μs] Standard deviation [μs]

30% CPU load native Xen 10.217 0.375

new timers 10.039 0.067

60% CPU load native Xen 10.188 0.398

new timers 10.148 0.262

100% CPU load native Xen 10.151 0.313

new timers 10.100 0.312

doi:10.1371/journal.pone.0130887.t002

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 12 / 25

conclude that the KVM timer events precision is from around 5 (in case of 10μs intervals) to
around 21 (for 150μs intervals) times worse than in case of an idle system.

The heavy IO operations also have an influence on the Xen timer events. As it is presented
in Table 1 and Fig 12 the resolution is maintained but the precision is worse than in case of the
idle system. There are multiple events over 50μs, which may be unacceptable for some applica-
tions. Nevertheless, Xen still proves to be better in resolution and precision when compared to
all other virtualization platforms.

Fig 7. The number of interrupts per second in the idle system and in the systemwith heavy IO load.

doi:10.1371/journal.pone.0130887.g007

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 8. The difference between the measured interval and its expected value 50μs in VMWare (system
with heavy IO load).

doi:10.1371/journal.pone.0130887.g008

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 13 / 25

Linux kernel without virtualization shows similar behavior to Xen. The results are also pre-
sented in Table 1 and Fig 13. Comparing to Xen the bare Linux kernel provides around 2 times
better precision of the timer events in the case of a system with heavy IO load.

As we can see, heavy disk operations cause additional negative effects on the timer precision
in all of the tested virtualization platforms. The effect is observed most significantly in
VMWare and Qemu. The least affected were Linux kernel without virtualization and Xen.

 02222

 42222

 62222

 82222

 122222

 102222

 142222

 162222

 182222

 022222

 2 522 1222 1522 0222 0522 3222 3522 4222 4522

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 9. The difference between the measured interval and its expected value 50μs in
VirtualBox (systemwith heavy IO load).

doi:10.1371/journal.pone.0130887.g009

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 10. The difference between the measured interval and its expected value 50μs in Qemu (system
with heavy IO load).

doi:10.1371/journal.pone.0130887.g010

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 14 / 25

Taking these results into consideration, we can say that among all the examined virtualiza-
tion environments the most accurate timer events can be obtained by using Xen virtualization.
However, modification of the timer_slop variables is required. Unfortunately, this change
affects the number of delivered timer interrupts in all hrtimer usages inside all the virtual
machines. Without this modification, Xen timer events have resolution of 100μs.

Summarizing, we can state that achieving the timer events with resolution of a about ten
microseconds with high precision in the heavy IO load is not possible in any of the examined

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 11. The difference between the measured interval and its expected value 50μs in KVM (system
with heavy IO load).

doi:10.1371/journal.pone.0130887.g011

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 12. The difference between the measured interval and its expected value 50μs in Xen (systemwith
heavy IO load).

doi:10.1371/journal.pone.0130887.g012

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 15 / 25

virtualization platforms. Even without the virtualization, the Linux kernel does not provide
good precision with high IO loads. To solve this problem we decided to create a separate timer
implementation in Xen which would be used only for special purposes, providing better resolu-
tion and precision while not affecting the overall system performance, and other hrtimer
events.

In the following sections, we will describe the general Xen architecture and the timer event
device implementation. Further we will show how we have implemented our own timer event
device and present an evaluation of this implementation similar to the experiments shown
above.

Xen VMM
Xen was created to virtualize x86 architecture with good performance thanks to paravirtualiza-
tion. As it has been already stated, this approach has several advantages over full virtualization
mode. First of all, there is no run-time binary rewriting. Additionally, as the guest operating
system requires to be modified, the changes can also eliminate certain device emulation,
improving the performance even further.

Additionally Xen was one of the first virtualization platforms with hypervisor-based archi-
tecture. Instead of running an existing operating system directly on the hardware (i.e. in
Ring0), it uses a small hypervisor, see Fig 14. After start, the hypervisor runs the first virtual
machine, Domain0, in a less privileged mode (depending on architecture this could be Ring1 or
Ring3). In fact, this is the first OS that the user has contact with, because the hypervisor does
not contain any user interfaces. The Domain0 is a privileged virtual machine (VM) which can
control and manage the hypervisor, and has a permission to access the IO devices. As Domain0
can run any of the supported operating systems, it can use the existing device drivers to access
the real devices. Moreover, it is responsible for sharing them with other VMs. This is achieved
by the Backend/Frontend drivers (see Fig 14). Such design provides good reliability and stability
of the system. The hypervisor controls only the CPU and memory, while the device drivers

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number
Fig 13. The difference between the measured interval and its expected value 50μs in Linux kernel
without virtualization (systemwith heavy IO load).

doi:10.1371/journal.pone.0130887.g013

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 16 / 25

Fig 14. Xen VMM architecture.

doi:10.1371/journal.pone.0130887.g014

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 17 / 25

(which are the cause of most kernel errors) are separated from the hypervisor. Therefore their
errors do not influence other VMs stability. Xen can be configured also to provide device access
to certain VMs called Driver Domains. In this way the administrator can separate even a single
device driver, so that a fatal system error in one of the driver domains would not affect any
other.

Xen timer implementation
In order to run a virtual machine, the VMM has to provide timer events to the guest operating
systems. In contrast to other VMMs that achieve this through emulation of the existing timer
devices, Xen again uses paravirtualization. The modified guest kernel contains a new Clock
Event Device which schedules a timer interrupt in the hypervisor using hypercalls (see [12] or
[27]). Further, the hypervisor sets local APIC timer accordingly. Of course, such an implemen-
tation requires not only a very fast delivery of the interrupt into the VM, but also some control
mechanism for the scheduled events from all virtual machines.

Timers in the hypervisor. The Xen hypervisor uses local APIC for scheduling the timer
events. The virtualized event device can work in two modes: singleshot and periodic. In order to
schedule a new event, the VM has to call the VCPUOP_set_singleshot_timer or VCPUOP_set_-
periodic_timer hypercall accordingly. All scheduled timer events are stored in two data struc-
tures: (faster) heap and (slower) linked list. Each time the lapic interrupt occurs, the handler
executes the expired timer events and, at the end, schedules next lapic interrupt looking for the
earliest deadline timer. To improve the performance and lower the number of the timer inter-
rupts, a timer_slop parameter is used. It denotes the amount of the time (in nanoseconds) that
the timer can be late. All timers from such interval will be executed in a single lapic interrupt.
The timer_slop is set by default to 50000ns.

Virtual timer interrupt. All interrupts in Xen are handled by the hypervisor. It then deliv-
ers them to guest OSs using so called event channels [12]. There are three types of the events:
Physical IRQ, Virtual IRQ (VIRQ) and inter-domain events. Different hardware interrupts are
delivered using Physical IRQs event channels. This is done to make the standard device drivers
work correctly and map real IRQs inside the guest kernel. In the case of virtual devices, such as
the aforementioned timer event device, the Virtual IRQs are used. There is a special virtual
timer interrupt called VIRQ_timer.

A simplified process of handling hardware interrupt and delivering it to the VM using an
event channel is presented in Fig 15.

Inside the hypervisor, all hardware interrupts are handled using the common_interrupt rou-
tine (defined in xen/arch/x86/x86_64/entry.S file). This macro is a wrapper for the real handler.
It performs common interrupt tasks (like saving registers before executing the handler) but
also returns to the VM context afterwards. The ret_from_intr assembly routine is used to exe-
cute the pending event channel requests and, at the end, return to the previously executed
VCPU process. This is actually done every time the hypervisor returns to certain VCPU con-
text, no matter what the cause of previous preemption was (it could be the mentioned hardware
interrupt, but also Xen CPU scheduler preemption for different VCPU), to allow the VCPU
receive the pending events as soon as possible. If an event is pending for the returning VCPU
then the hypervisor has to return to the event handling routing in guest VM. This is done by
creating a special bounce frame on the guest stack, so that the return will restore the instruction
pointer to the event handling function (usually called xen_hypervisor_callback—the guest OS,
while initiating has to register it using the CALLBACKOP_register operation of theHYPERVI-
SOR_callback_op hypercall) with appropriate arguments. Further, the context switches to guest
OS and executes the xen_hypervisor_callback routine which is a wrapper around the

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 18 / 25

Fig 15. Simplified hardware interrupt handling process with propagation to VM using event channel.

doi:10.1371/journal.pone.0130887.g015

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 19 / 25

xen_evtchn_do_upcall function. The latter, using the arguments received in the bounce frame
from the hypervisor, executes an appropriate handler for the given event channel.

As it was already stated, the timers in Xen are paravirtualized using a new clock event device
(usually called xen_clockevent defined in xen/time.c). This virtual clock event device registers
an event channel handler for the VIRQ_timer virtual interrupt. Further it becomes the default
clock event device and thus it is used by all event related kernel mechanisms (one of them are
hrtimers). Every time the timer event is scheduled the device sends the VCPUOP_set_single-
shot_timer hypercall setting the next VIRQ_timer interrupt time.

Such a design has some drawbacks which may affect the timers resolution and precision.
Firstly, all the scheduled timers are delivered using the same mechanism and the same virtual
interrupt. In practice we need much less fine grained timers for some purposes than for the
other, so using the same high resolution mechanism may result in decreased accuracy for the
crucial applications. Additionally, other virtual interrupts may also delay the timer event (if
they are fired just before VIRQ_timer). Secondly, the CPU scheduler may delay the virtual
timer interrupt until the receiver VCPU will be scheduled again. Further, Xen creates a virtual
time which is synchronized with the hypervisor real time on every VIRQ_timer interrupt. This
normally does not introduce any shift. However, in some cases the absolute timer timeout may
be calculated before the virtual time synchronization but scheduled after, so that would make
the timer event shift. Finally, the clock event device is optimized (similarly as in the hypervisor)
with the TIMER_SLOP constant. All timers falling in the range of a single TIMER_SLOP are
handled by the same single interrupt. The constant is set to 100μs which is fine in many cases
but in some applications may be too large. For example, we have implemented a network
scheduler which required timer events with resolution of tens of microseconds. In this case
proposed value would be 10μs.

New High Resolution Timer
To overcome the precision problems we decided to create our own timer implementation,
which might be used only in cases when it is really required. For example in applications
highlighted in the introduction other system processes might still use standard timer imple-
mentation built in the virtualization platform.

The idea was to introduce a new virtual interrupt VIRQ_custom_timer which would be han-
dled before any other interrupts. Moreover, the other interrupts, as well as VCPU rescheduling,
should be avoided near the custom timer timeout, so that it would not be disturbed. To achieve
this we created a separate event channel to allow any guest domain to bind and register the
VIRQ_custom_timer handler. This was done by defining the new virtual interrupt and increas-
ing the number of all VIRQs in the Xen hypervisor header file xen/include/public/xen.h.

The new virtual interrupt should be delivered to a single, predefined VCPU, rather than to
any of them, so that the guest domain can expect the interrupt and avoid all other interrupts
near the timer deadline only on this predefined VCPU. This is possible when the function vir-
q_is_global returns 0 for the VIRQ_CUSTOM_TIMER parameter (Listing A in S1 Text).

Such binding of the VIRQ to a single chosen virtual processor can also help to avoid the
VCPU reschedules that can be achieved in two different ways depending on the application
being run and the amount of available resources:

• By assigning a single physical processor to the single VCPU which is responsible for handling
timer interrupts, thus disabling the VCPU scheduler completely on this virtual processor
(the vcpu-pin command).

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 20 / 25

• By modifying the Xen CPU scheduler to ensure that the correct VCPU is scheduled near the
timer deadline.

The first method requires much less modifications and does not depend on the CPU sched-
uler algorithm, therefore it can be recommended (especially for the multicore systems). This
method was also used for the purpose of this study.

The final hypervisor modification is the actual timer scheduling and handling functionality.
The guest operating systems are allowed to schedule the new timer events via the same hyper-
call (i.e. VCPUOP_set_singleshot_timer), as in the case of standard timers but with an addi-
tional flag SS_CUSTOM_TIMER.

The modified version of VCPUOP_set_singleshot_timer uses the existing Xen LAPIC timer
functions defined in xen/timer.h to schedule timer events at the requested time. Finally, the
hypervisor handler—custom_timer_fn sends the VIRQ_CUSTOM_TIMER interrupt to appro-
priate guest VCPU. These modifications are presented in Listing B in S1 Text.

All above modifications to the hypervisor kernel allow the guest domain to bind and handle
the new timer events. Listing C in S1 Text presents an exemplary code which schedules and
handles such a timer. This code can be used in any kernel module and allows for scheduling
and handling the new timer events.

As it was already stated, it is important to treat the VIRQ_CUSTOM_TIMER interrupt with
highest priority, to achieve the best precision. This can be set in the logic of initiating the virtual
interrupt handler, in the virtual machine kernel, using the xen_set_irq_priority which is pre-
sented in Listing D in S1 Text.

Finally the most important change is to avoid execution of other interrupts near the timer
deadline. This can be done in the xen_evtchn_do_upcall function as shown in Listing E in S1
Text.

Because this implementation will not be used as a general clock event device, all other timer
requests will not use this functionality. This is a great advantage because the timer_slop vari-
ables can be left untouched and the system will not be flooded by different timer interrupts.

To verify our timer implementation and compare it with the native implementation tested
previously we performed again the same set of experiments, using the new timer. The detailed
results for all tested scenarios are shown in Table 1 (the “new timers” rows relate to the pro-
posed timer implementation).

As we can note, the new timer has no problem to achieve resolutions up to 10μs. What is
more, a significant improvement in the precision (compared to the native Xen) is gained. Espe-
cially for the system with heavy IO load the precision may be improved in some cases by two
orders of magnitude (e.g., for 50μs we have StdDev = 0.156μs versus 17.628μs in the native
Xen).

The results for the 10μs setting are depicted also in Figs 16 and 17. As we can see, for both
idle system and system with heavy IO operations, the results look much better than for the
native Xen implementation. All the events are gathered near the expected time and only a few
measurements cross the 1μs delay.

Finally, Figs 18 and 19 present all the results for intervals of 50μs in the system with high IO
load gathered on one graph to allow visual comparison between all considered virtualization
systems. In particular, in Fig 18 the new timer implementation is compared with platforms of
low resolution (Qemu, KVM, VMWare and VirtualBox), while in Fig 19 with platforms of
higher resolution (Xen and Linux kernel).

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 21 / 25

Fig 16. The difference between the measured timer interval and its expected value 10μs for the new
timer implementation (idle system).

doi:10.1371/journal.pone.0130887.g016

Fig 17. The difference between the measured timer interval and its expected value 10μs for the new
timer implementation (systemwith heavy IO load).

doi:10.1371/journal.pone.0130887.g017

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 22 / 25

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 500 1000 1500 2000

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number

New timer implementation
Qemu

KVM
VMWare

VirtualBox

Fig 18. The difference between the measured timer interval and its expected value 50μs for platforms
with low resolution (systems with heavy IO load).

doi:10.1371/journal.pone.0130887.g018

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

Di
er

en
ce

 fr
om

 e
xp

ec
te

d
va

lu
e

 n
s

Measurement number

New timer implementation
Xen

Linux kernel

Fig 19. The difference between the measured timer interval and its expected value 50μs for platforms
with higher resolution (systems with heavy IO load).

doi:10.1371/journal.pone.0130887.g019

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 23 / 25

Conclusion
We presented a study on high resolution timer events inside virtual machines using different
virtualization platforms, i.e. Xen, KVM, Qemu, VirtualBox and VMWare. As shown in our
experiments the timer resolution provided by those VMMs may not be sufficient for some pur-
poses, especially under high interrupt load.

In particular, VMWare provided the worst resolution and precision of the timer events.
KVM provided better resolution than VMWare, but still at the level of tens of microseconds.
Resolution provided by Xen can be of ten microseconds but this requires changing the slop
value to 1ns in the hypervisor and in the guest domain kernel sources. Without these changes
the resolution is of a hundred microsecond. On the other hand, such changes may have a deep
impact on the overall system behavior and performance.

In all studied platforms, the timer precision was strongly affected by other IO interrupts.
In order to enhance resolution and significantly reduce the impact of other IO interrupts on

the precision we proposed a new timer implementation based on Xen VMM. We believe that
modifications based on the same general idea can be applied analogically in the standalone
Linux kernel, as well as in KVM.

Creating a separate purpose-built timer event device may prove to be the only solution for
very demanding applications. In the case of open source platforms, this can be achieved by
modifying the sources. However, in the case of closed solutions, such as VMWare it is not pos-
sible. As shown in the experiments, the new implementation in Xen provides a very good reso-
lution and precision even in highly interrupted system.

Supporting Information
S1 Text. Code listings. File xen/common/event_channel.c (Listing A). File xen/common/
domain.c (Listing B). Sample timer use (Listing C). File arch/x86/xen/time.c (Listing D). File
drivers/xen/events/events_base.c (Listing E).
(PDF)

Author Contributions
Conceived and designed the experiments: BA AC. Performed the experiments: BA AC. Ana-
lyzed the data: BA AC. Contributed reagents/materials/analysis tools: BA AC. Wrote the paper:
BA AC.

References
1. Intel Corporation. 8254/82C54: Introduction to Programmable Interval Timer; 2004. Available from:

http://www.intel.com/design/archives/periphrl/docs/7203.htm

2. Maxim Integrated Products. Real-Time Clocks Product Guide; 2011. edition 2.

3. Intel Corporation. MultiProcessor Specification; 1997. version 1.4.

4. Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd,
Toshiba Corporation. Advanced Configuration and Power Interface Specification; 2011. revision 5.0.

5. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual: Instruction Set Refer-
ence; 2012. volume 2.

6. Intel Corporation. IA-PC HPET (High Precision Event Timers) Specification; 2004. revision 1.0a.

7. Siddha S, Pallipadi V, Van De Ven A. Getting maximummileage out of tickless. In: Proceedings of the
Linux Symposium, Ottawa, Ontario, Canada; 2007. p. 201–208.

8. Gleixner T, Niehaus D. Hrtimers and beyond: Transforming the linux time subsystems. In: Proceedings
of the Ottawa Linux Symposium, Ottawa, Ontario, Canada. vol. 1; 2006. p. 333–346.

9. Oberle V, Walter U. Micro-second precision timer support for the Linux kernel. Relatório técnico, IBM
Linux ChallengeWinner of an IBM Linux Challenge Award. 2001;.

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 24 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130887.s001
http://www.intel.com/design/archives/periphrl/docs/7203.htm

10. Kiszka J. Towards Linux as a Real-Time Hypervisor. In: Eleventh Real-Time LinuxWorkshop; 2009.

11. VMware, Inc. Timekeeping in VMWare Virtual Machines; 2008.

12. Chisnall D. The Definitive Guide to the Xen Hypervisor. Prentice Hall Press, Upper Saddle River;
2007.

13. Wei G, Liu J, Xu J, Lu G, Yu K, Tian K. The on-going evolutions of power management in Xen. Intel Cor-
poration; 2009.

14. Vattikonda BC, Das S, Shacham H. Eliminating fine grained timers in Xen. In: Proceedings of the 3rd
ACMWorkshop on Cloud Computing Security Workshop; 2011. p. 41–46.

15. Burakowski W, Tarasiuk H, Beben A, Danilewicz G. Virtualized Network Infrastructure Supporting Co-
existence of Parallel Internets. In: 2012 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel Distributed Computing (SNPD); 2012. p. 679–684.

16. Davis RI. A review of fixed priority and EDF scheduling for hard real-time uniprocessor systems. ACM
SIGBED Review. 2014; 11(1):8–19. Available from: http://dl.acm.org/citation.cfm?id = 2597458 doi: 10.
1145/2597457.2597458

17. Hamayun MM, Spyridakis A, Raho DS. Towards Hard Real-Time Control and Infotainment Applications
in Automotive Platforms. OSPERT 2014. 2014;p. 39. Available from: https://mpi-sws.org/˜bbb/
proceedings/ospert14-proceedings.pdf#page=39

18. VMware, Inc. VMWare Player;. Available from: http://www.vmware.com/pl/products/player

19. Oracle Corporation. Oracle VM VirtualBox;. Available from: https://www.virtualbox.org/

20. QEMU team. QEMU;. Available from: http://wiki.qemu.org/Main_Page

21. Xen Project. Xen Hypervisor;. Available from: http://www.xenproject.org/

22. Open Virtualization Alliance. Kernel-based Virtual Machine;. Available from: http://www.linux-kvm.org/

23. Popek GJ, Goldberg RP. Formal requirements for virtualizable third generation architectures. Commu-
nications of the ACM. 1974; 17(7):412–421. Available from: http://dl.acm.org/citation.cfm?id = 361073
doi: 10.1145/361011.361073

24. VMware, Inc. VMware End User License Agreement;. Available from: https://www.vmware.com/pl/
download/eula/universal_eula.html

25. VMware, Inc. Understanding Full Virtualization, Paravirtualization, and Hardware Assist; 2007.

26. King C. Stress-ng;. Available from: http://kernel.ubuntu.com/˜cking/stress-ng/

27. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, et al. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review. 2003; 37(5):164–177. Available from: http://dl.acm.org/citation.
cfm?id = 945462 doi: 10.1145/1165389.945462

High Resolution Timers in Virtualized Environment

PLOS ONE | DOI:10.1371/journal.pone.0130887 July 15, 2015 25 / 25

http://dl.acm.org/citation.cfm?id = 2597458
http://dx.doi.org/10.1145/2597457.2597458
http://dx.doi.org/10.1145/2597457.2597458
https://mpi-sws.org/˜bbb/proceedings/ospert14-proceedings.pdf#page=39
https://mpi-sws.org/˜bbb/proceedings/ospert14-proceedings.pdf#page=39
http://www.vmware.com/pl/products/player
https://www.virtualbox.org/
http://wiki.qemu.org/Main_Page
http://www.xenproject.org/
http://www.linux-kvm.org/
http://dl.acm.org/citation.cfm?id = 361073
http://dx.doi.org/10.1145/361011.361073
https://www.vmware.com/pl/download/eula/universal_eula.html
https://www.vmware.com/pl/download/eula/universal_eula.html
http://kernel.ubuntu.com/˜cking/stress-ng/
http://dl.acm.org/citation.cfm?id = 945462
http://dl.acm.org/citation.cfm?id = 945462
http://dx.doi.org/10.1145/1165389.945462

